Answer:
[tex]\boxed{ \: \boxed{ x = 10} \: is \: applicable} [/tex]
Step-by-step explanation:
[tex]if \: the \: question \: is \to \\ \boxed{log_{10}(x - 9) + log_{10}(x)= 1} \\ then \: the \: value \: of \: \boxed{ x }\: can \: be \: gotten \: by \to\\ log_{10} \{ x( x - 9)\} = 1 \\ log_{10}( {x}^{2} - 9x) = 1 \\ {10}^{1} = {x}^{2} - 9x \\ {x}^{2} - 9x = 10 \\ {x}^{2} - 9x - 10 = 0 \\ {x}^{2} + x - 10x - 10 = 0 \\ x( x + 1) - 10(x + 1) = 0 \\ (x + 1)(x - 10) = 0 \\ \boxed{\boxed{ x + 1 = 0 }\: or \: \boxed{ x - 10 = 0}} \\ \boxed{\boxed{ x = - 1 }\: or \: \boxed{ x = 10}} [/tex]
♨Rage♨