Respuesta :

Space

Answer:

[tex]\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{e^\bigg{\frac{1}{4}}}{8} - \frac{e^\bigg{\frac{1}{9}}}{8}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Terms/Coefficients
  • Factoring
  • Exponential Rule [Rewrite]:                                                                           [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

U-Substitution

eˣ Integration:                                                                                                         [tex]\displaystyle \int {e^u} \, dx = e^u + C[/tex]

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx[/tex]

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set:                                                                                                                 [tex]\displaystyle u = 4x^{-2}[/tex]
  2. [u] Differentiate [Derivative Rule - Basic Power Rule]:                               [tex]\displaystyle du = -8x^{-3} \ dx[/tex]
  3. [du] Rewrite [Exponential Rule - Rewrite]:                                                   [tex]\displaystyle du = \frac{-8}{x^3} \ dx[/tex]

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^6_4 {\frac{-8}{x^3}e^{4x^{-2}}} \, dx[/tex]
  2. [Integral] U-Substitution:                                                                                [tex]\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{1}{9}}_{\frac{1}{4}} {e^u} \, dx[/tex]
  3. [Integral] eˣ Integration:                                                                                [tex]\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}(e^u) \bigg| \limits^{\frac{1}{9}}_{\frac{1}{4}}[/tex]
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:          [tex]\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8} \bigg[ -e^\bigg{\frac{1}{9}} \bigg( e^\bigg{\frac{5}{36}} - 1 \bigg) \bigg][/tex]
  5. Simplify:                                                                                                         [tex]\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{e^\bigg{\frac{1}{4}}}{8} - \frac{e^\bigg{\frac{1}{9}}}{8}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Q&A Education