Respuesta :

Space

Answer:

[tex]\displaystyle \int\limits^{\frac{2 \pi}{3}}_{\frac{- \pi}{3}} {\frac{sinx}{1 + cosx}} \, dx = ln3[/tex]

General Formulas and Concepts:

Pre-Calculus

  • Unit Circle

Calculus

Derivatives

Derivative Notation

Trig Derivatives

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                        [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                             [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Trig Integration

Logarithmic Integration

U-Substitution

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^{\frac{2 \pi}{3}}_{\frac{- \pi}{3}} {\frac{sinx}{1 + cosx}} \, dx[/tex]

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:                                                                                                                 [tex]\displaystyle u = 1 + cos(x)[/tex]
  2. [u] Differentiate [Trig Derivative]:                                                                    [tex]\displaystyle du = -sinx \ dx[/tex]

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     [tex]\displaystyle \int\limits^{\frac{2 \pi}{3}}_{\frac{- \pi}{3}} {\frac{sinx}{1 + cosx}} \, dx = -\int\limits^{\frac{2 \pi}{3}}_{\frac{- \pi}{3}} {\frac{-sinx}{1 + cosx}} \, dx[/tex]
  2. [Integral] U-Substitution:                                                                                  [tex]\displaystyle \int\limits^{\frac{2 \pi}{3}}_{\frac{- \pi}{3}} {\frac{sinx}{1 + cosx}} \, dx = -\int\limits^{\frac{1}{2}}_{\frac{3}{2}} {\frac{1}{u}} \, du[/tex]
  3. [Integral] Logarithmic Integration:                                                                   [tex]\displaystyle \int\limits^{\frac{2 \pi}{3}}_{\frac{- \pi}{3}} {\frac{sinx}{1 + cosx}} \, dx = -ln|u| \bigg| \limits^{\frac{1}{2}}_{\frac{3}{2}}[/tex]
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle \int\limits^{\frac{2 \pi}{3}}_{\frac{- \pi}{3}} {\frac{sinx}{1 + cosx}} \, dx = -(-ln3)[/tex]
  5. Simplify:                                                                                                             [tex]\displaystyle \int\limits^{\frac{2 \pi}{3}}_{\frac{- \pi}{3}} {\frac{sinx}{1 + cosx}} \, dx = ln3[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Q&A Education