Respuesta :

Space

Answer:

[tex]\displaystyle \int\limits^8_1 {\frac{3}{x}} \, dx = 9 \ln 2[/tex]

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Area of a Region Formula:                                                                                     [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle f(x) = \frac{3}{x} \\\left[ 1 ,\ 8 \right][/tex]

Step 2: Integrate

  1. Substitute in variables [Area of a Region Formula]:                                   [tex]\displaystyle \int\limits^8_1 {\frac{3}{x}} \, dx[/tex]
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle 3 \int\limits^8_1 {\frac{1}{x}} \, dx[/tex]
  3. [Integral] Logarithmic Integration:                                                               [tex]\displaystyle 3 \int\limits^8_1 {\frac{1}{x}} \, dx = 3 \ln \big| x \big| \bigg| \limits^8_1[/tex]
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           [tex]\displaystyle 3 \int\limits^8_1 {\frac{1}{x}} \, dx = 3 \ln 8[/tex]
  5. Simplify:                                                                                                         [tex]\displaystyle \int\limits^8_1 {\frac{3}{x}} \, dx = 9 \ln 2[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Q&A Education