Respuesta :

Space

Answer:

[tex]\frac{d}{dx} f(x) =-10[/tex]

General Formulas and Concepts:

Calculus

  • Derivative Notation
  • Definition of a Derivative: [tex]\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}[/tex]

Step-by-step explanation:

Step 1: Define

f(x) = -10x

Step 2: Find Derivative

  1. Substitute:                         [tex]\frac{d}{dx} f(x)= \lim_{h \to 0} \frac{-10(x + h)-(-10x)}{h}[/tex]
  2. Distribute -10:                    [tex]\frac{d}{dx} f(x)= \lim_{h \to 0} \frac{-10x -10h-(-10x)}{h}[/tex]
  3. Distribute -1:                      [tex]\frac{d}{dx} f(x)= \lim_{h \to 0} \frac{-10x -10h+10x}{h}[/tex]
  4. Combine like terms:         [tex]\frac{d}{dx} f(x)= \lim_{h \to 0} \frac{-10h}{h}[/tex]
  5. Divide:                               [tex]\frac{d}{dx} f(x)= \lim_{h \to 0} -10[/tex]
  6. Evaluate:                           [tex]\frac{d}{dx} f(x)=-10[/tex]
Q&A Education