Respuesta :

Answer:

The y-intercept of the function is: b=10

Step-by-step explanation:

Given the table

x                 y

1                 8

2                6

3                4

4                2

Taking any two points to find the slope

  • (1, 8)
  • (2, 6)

The slope between (1, 8) and (2, 6) is:

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(1,\:8\right),\:\left(x_2,\:y_2\right)=\left(2,\:6\right)[/tex]

[tex]m=\frac{6-8}{2-1}[/tex]

[tex]m=-2[/tex]

We know that the slope-intercept form of the line equation is

[tex]y=mx+b[/tex]

where m is the slope and b is the y-intercept.

Substituting m=-2 and any point i.e. (1, 8) in the slope-intercept form of the line equation to find the y-intercept (b).

[tex]y=mx+b[/tex]

8 = -2(1) + b

8 = -2 + b

b = 8+2

b = 10

Thus, the y-intercept of the function is: b=10

Answer:

10

Step-by-step explanation:

Q&A Education