A circles has radius 10 centimeters. Suppose an arc on the circle has length 8[tex]\pi[/tex] centimeters. what is the measure of the central angle whose radii define the arc?

Respuesta :

Answer:

The measure of the central angle whose radii define the arc is [tex]\mathbf{\frac{4\pi }{5} }[/tex]

Step-by-step explanation:

Radius of circle = 10 cm

Length of arc = [tex]8\pi[/tex]

We need to find Theta [tex]\theta[/tex]

The formula used will be: [tex]S=r \theta[/tex]

S= length of arc, r = radius and [tex]\theta[/tex] = angle

Putting values and finding \theta

[tex]S=r \theta\\8\pi =10 \theta\\\theta=\frac{8\pi }{10} \\\theta=\frac{4\pi }{5}[/tex]

So, the measure of the central angle whose radii define the arc is [tex]\mathbf{\frac{4\pi }{5} }[/tex]

Q&A Education