Respuesta :

Answer:

[tex]\boxed{4x^2-15x-4=(x-4)(4x+1)}[/tex]

Solution Steps:

______________________________

1.) Change the equation using factored transformation:

  • [tex]4x^2-15x-4=0[/tex]

 - Quadratic polynomial can be factored using the transformation [tex]ax^2+bx+c=a(x-x_{1})(x-x_{2})[/tex], where [tex]x_{1}[/tex] and [tex]x_{2}[/tex] are the solutions of the quadratic equation [tex]ax^2+bx+c=0[/tex].

 - This steps basically means change you current equation using the formula [tex]ax^2+bx+c=0[/tex].

2.) Turn the factored form into the quadratic equation form:

  • [tex]x=\frac{-(-15)\frac{+}{}\sqrt{(-15)^2-4\bold{x}4(-4)}}{2\bold{x}4}[/tex]

 - All equations of the form [tex]ax^2+bx+c=0[/tex] can be solved using the quadratic formula: [tex]\sqrt{\frac{-b\frac{+}{}\sqrt{b^2-4ac}}{2a} }[/tex].

 - The quadratic equation formula gives two solutions, one when [tex]\frac{+}{}[/tex] is addition and one when it is subtraction.

3.) Square -15:

  • [tex]-15^2=225[/tex]

Equation at the end of Step 3:

  • [tex]x=\frac{-(-15)\frac{+}{}\sqrt{225-4\bold{x}4(-4)}}{2\bold{x}4}[/tex]

4.) Multiply −4 times 4:

  • [tex]-4[/tex] × [tex]4=-16[/tex]

Equation at the end of Step 4:

  • [tex]x=\frac{-(-15)\frac{+}{}\sqrt{225-16(-4)}}{2\bold{x}4}[/tex]

5.) Multiply −16 times −4:

  • [tex]-16[/tex] × [tex]-4=64[/tex]

Equation at the end of Step 5:

  • [tex]x=\frac{-(-15)\frac{+}{}\sqrt{225+64}}{2\bold{x}4}[/tex]

6.) Add 225 to 64:

  • [tex]225+64=289[/tex]

Equation at the end of Step 6:

  • [tex]x=\frac{-(-15)\frac{+}{}\sqrt{289}}{2\bold{x}4}[/tex]

7.) Take the square root of 289:

  • [tex]\sqrt{289}=17[/tex]

Equation at the end of Step 7:

  • [tex]x=\frac{-(-15)\frac{+}{}17}{2\bold{x}4}[/tex]

8.) Change -15 to positive 15:

  • [tex]-15=15[/tex]

Equation at the end of Step 8:

  • [tex]x=\frac{15\frac{+}{}17}{2\bold{x}4}[/tex]

9.) Multiply 2 by 4:

  • [tex]2[/tex] × [tex]4=8[/tex]

Equation at the end of Step 9:

  • [tex]x=\frac{15\frac{+}{}17}8}[/tex]

10.) Now Solve:

Now solve the equation [tex]x=\frac{15\frac{+}{}17}8}[/tex] when [tex]\frac{+}{}[/tex] is plus.

Add 15 to 17:

  • [tex]15+17=32[/tex]
  • [tex]x=\frac{32}{8}[/tex]

Divide 32 by 8:

  • [tex]32[/tex] ÷ [tex]8=4[/tex]
  • [tex]x=4[/tex]

Now solve the equation [tex]x=\frac{15\frac{+}{}17}8}[/tex] when [tex]\frac{+}{}[/tex] is minus.

Subtract 15 by 17:

  • [tex]15-17=-2[/tex]
  • [tex]x=\frac{-2}{8}[/tex]

Reduce the fraction to lowest terms by extracting and canceling out 2:

  • [tex]-2[/tex] ÷ [tex]-2=-1[/tex]
  • [tex]8[/tex] ÷ [tex]-2=-4[/tex]
  • [tex]x=-\frac{1}{4}[/tex]

11.) Factor the expression:

Factor the original expression using [tex]ax^2+bx+c=a(x-x_{1})(x-x_{2})[/tex]. Substitute 4 for [tex]x_{1}[/tex] and [tex]-\frac{1}{4}[/tex] for [tex]x_{2}[/tex]:

  • [tex]4x^2-15x-4=4(x-4)(x-(-\frac{1}{4}))[/tex]

Simplify all the expressions of the form [tex]p-(-q)[/tex] to [tex]p+q[/tex]:

  • [tex]4x^2-15x-4=4(x-4)(x+\frac{1}{4})[/tex]

Add [tex]\frac{1}{4}[/tex] to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible:

  • [tex]4x^2-15x-4=4(x-4)\bold{x}(\frac{4x+1}{4})[/tex]

Cancel out 4, the greatest common factor in 4 and 4:

  • [tex]4x^2-15x-4=(x-4)(4x+1)[/tex]

______________________________

Q&A Education