The ratio of 14C to 12C in living organisms is 1.3 × 10-12. The fossilized remains of an organism are discovered and the ratio of 14C to 12C in the fossil is measured to be 4.6 × 10-13. How long ago, in years was the organism alive? (The half life of 14C is 5,730 years.)

Respuesta :

Answer:

t = 8588 years

Step-by-step explanation:

From the given information:

Using the formula:

[tex]k = \dfrac{In (2)}{t_{1/2}}[/tex]

Given that:

[tex]t_{1/2}[/tex] = 5730 years

Then:

[tex]k = \dfrac{In (2)}{5730}[/tex]

[tex]k = \dfrac{0.6931472}{5730}[/tex]

k = 1.20968 × 10⁻⁴

However; the expression to find the value of x is:

[tex]x= x_oe^{-kt}[/tex]

[tex]4.6 \times 10^{-13} = 1.3 \times 10^{-12} \times e^{(-1.20968\times 10^{-4} \times t)}[/tex]

[tex]\dfrac{4.6 \times 10^{-13} }{1.3 \times 10^{-12}}= e^{(-1.20968\times 10^{-4} \times t)}[/tex]

[tex]0.353846= e^{(-1.20968\times 10^{-4} \times t)}[/tex]

(-1.20968 × 10⁻⁴ × t) = In(0.353846)

(-1.20968 × 10⁻⁴ × t) = -1.03889

[tex]t = \dfrac{-1.03889}{-1.20968 \times 10^{-4}}[/tex]

t = 8588 years

Q&A Education