Suppose an automobile has 2000-joules of kinetic energy. when it moves at twice the speed, what will be its kinetic energy? what's its kinetic energy at three times the speed?

Respuesta :

Answer:

K.Eₓ = 4 K.E

K.Eₓ = 9 K.E

Explanation:

Th formula for the kinetic energy of a body is given as follows:

[tex]K.E = \frac{1}{2}mv^2\\[/tex]   ---------------equation (1)

where,

K.E = Kinetic Energy of Automobile

m = mass of automobile

v = speed of automobile

For twice speed:

vₓ = 2v

then,

[tex]K.E_{x} = \frac{1}{2}mv_{x}^2\\K.E_{x} = \frac{1}{2}m(2v)^2\\K.E_{x} = 4\frac{1}{2}mv^2\\[/tex]

using equation (1):

K.Eₓ = 4 K.E

For thrice speed:

vₓ = 3v

then,

[tex]K.E_{x} = \frac{1}{2}mv_{x}^2\\K.E_{x} = \frac{1}{2}m(3v)^2\\K.E_{x} = 9\frac{1}{2}mv^2\\[/tex]

using equation (1):

K.Eₓ = 9 K.E

A. The kinetic energy of automobile when it moves at twice the speed is 8000 J

B. The kinetic energy of automobile when it moves at three times the speed is 18000 J

Let the mass of the automobile be constant.

Let the initial velocity be v

A. Determination of the kinetic energy of the automobile when it moves at twice the speed.

  • Initial kinetic energy (KE₁) = 2000 J
  • Initial velocity (v₁) = v
  • Final velocity (v₂) = 2v
  • Final kinetic energy (KE₂) =?

KE₁ /v₁² = KE₂ / v₂²

2000 / v² = KE₂ / (2v)²

2000 / v² = KE₂ / 4v²

Cancel out v²

2000  = KE₂ / 4

Cross multiply

KE₂ = 2000 × 4

KE₂ = 8000 J

B. Determination of the kinetic energy of the automobile when it moves at three times the speed.

  • Initial kinetic energy (KE₁) = 2000 J
  • Initial velocity (v₁) = v
  • Final velocity (v₂) = 3v
  • Final kinetic energy (KE₂) =?

KE₁ /v₁² = KE₂ / v₂²

2000 / v² = KE₂ / (3v)²

2000 / v² = KE₂ / 9v²

Cancel out v²

2000  = KE₂ / 9

Cross multiply

KE₂ = 2000 × 9

KE₂ = 18000 J

Learn more about kinetic energy:

https://brainly.com/question/10703928

Q&A Education