Helium gas is compressed from 90 kPa and 30oC to 450 kPa in a reversible, adiabatic process. Determine the final temperature and the work done, assuming the process takes place (a) in a piston-cylinder device and (b) in a steadyflow compressor. [15

Respuesta :

Answer:

T2 ( final temperature ) = 576.9 K

a) 853.4 kJ/kg

b) 1422.3 kJ / kg

Explanation:

given data :

pressure ( P1 ) = 90 kPa

Temperature ( T1 ) = 30°c + 273 = 303 k

P2 = 450 kPa

Determine final temperature for an Isentropic  process

[tex]T2 = T1 (\frac{p2}{p1} )^{(k-1)/k}[/tex]  ----------- ( 1 )

T2 = 303 [tex]( \frac{450}{90})^{(1.667- 1)/1.667}[/tex] =  576.9K

Work done in a piston-cylinder device can be calculated using this formula

[tex]w_{in} = c_{v} ( T2 - T1 )[/tex]    ------- ( 2 )

where : cv = 3.1156 kJ/kg.k  for helium gas

             T2 = 576.9K ,    T1 = 303 K

substitute given values Back to equation 2

[tex]w_{in}[/tex]  = 853.4 kJ/kg

work done in a steady flow compressor can be calculated using this

[tex]w_{in} = c_{p} ( T2 - T1 )[/tex]

where : cp ( constant pressure of helium gas )  = 5.1926 kJ/kg.K

             T2 = 576.9 k , T1 = 303 K

substitute values back to equation 3

[tex]w_{in}[/tex] = 1422.3 kJ / kg

Lanuel

1. The final temperature for this reversible, adiabatic process is 576.82 Kelvin.

2a. Assuming the process took place in a piston-cylinder device, the work done is equal to 853.11 kJ/kg.

2b. Assuming the process took place in a steady-flow compressor, the work done is equal to 1422.82 kJ/kg.

Given the following data:

  • Initial pressure = 90 kPa
  • Final pressure = 450 kPa
  • Initial temperature = 30°C to K = [tex]273 + 30 = 303 \;Kelvin[/tex]

Constant, k = 1.667

Constant pressure for helium gas, [tex]C_p[/tex] = 5.1926 kJ/kg.K

Constant volume for helium gas, [tex]C_v[/tex] = 3.1156 kJ/kg.k

First of all, we would determine the final temperature for this isentropic process.

For an isentropic process, the final temperature is given by the formula:

[tex]T_2 = T_1 (\frac{P_2}{P_1})^{\frac{k-1}{k}}\\\\T_2 = 303 \times (\frac{450}{90})^{\frac{1.667-1}{1.667}}\\\\T_2 = 303 \times (5)^{\frac{0.667}{1.667}}\\\\T_2 = 303 \times 5^{0.40}\\\\T_2 = 303 \times 1.9037\\\\T_2 = 576.82 \;K[/tex]

a. In a piston-cylinder device, work done is given by the formula:

[tex]W = C_v(T_2 -T_1)\\\\W = 3.1156(576.82 -303)\\\\W = 3.1156 \times 273.82\\\\W = 853.11[/tex]

Work done, W = 853.11 kJ/kg

b. In a steady-flow compressor, work done is given by the formula:

[tex]W = C_p(T_2 -T_1)\\\\W = 5.1926(576.82 -303)\\\\W = 5.1926 \times 273.82\\\\W = 1422.82[/tex]

Work done, W = 1422.82 kJ/kg

Read more: https://brainly.com/question/22599382

Q&A Education