contestada

Determine the force P required to maintain the 200-kg engine in the position for which θ = 30°. The diameter of the pulley at B is negligible.

Respuesta :

Answer:

The force P required  is 1759.22 N

Explanation:

The missing diagram is seen in the first image below.

From the second image, we can see the schematic diagram of the engine hanging over the pulley.

To start with determining the value of the angle ∝;

[tex]tan \ \alpha = \dfrac{CD}{BD}[/tex]

where;

BD = AB-AD

Then;

[tex]tan \ \alpha = \dfrac{CD}{AB-AD}[/tex]

[tex]\alpha = tan^{-1} \bigg(\dfrac{CD}{AB-AD} \bigg )[/tex]

replacing their respective values, where;

CD = 2 sin 30° m,  AB = 2m and AD = 2 cos 30° m

[tex]\alpha = tan^{-1} \bigg(\dfrac{2 \ sin \ 30^0}{2-2 \ cos \ 30^0} \bigg )[/tex]

[tex]\alpha = tan^{-1} \bigg(\dfrac{1}{2-1.732} \bigg )[/tex]

[tex]\alpha = tan^{-1} \bigg(\dfrac{1}{0.268} \bigg )[/tex]

[tex]\alpha = tan^{-1} \bigg(3.73\bigg )[/tex]

[tex]\alpha \simeq 75^0[/tex]

From the third diagram attached below:

The tension occurring in the thread BC is equal to force P

[tex]T_{BC} = P[/tex]

Using the force equilibrium expression along the horizontal direction.

[tex]\sum F_x = 0\\\\ -T_{AC} \ cos \ 30^0 + Pcos \alpha = 0[/tex]

replacing the value of [tex]\alpha \simeq 75^0[/tex]

[tex]-T_{AC} \ cos 30^0 + P cos 75^0 = 0[/tex]

[tex]P \ cos \ 75^0 = T_{AC} \ cos \ 30^0[/tex]

[tex]P =\dfrac{ T_{AC} \ cos \ 30^0}{\ cos \ 75^0} \ \ \ - - - (1)[/tex]

Along the vertical direction, the force equilibrium equation can be expressed as:

[tex]\sum F_y =0[/tex]

[tex]-W + P \ sin \alpha + T_{AC} \ sin \ 30^0 = 0[/tex]

[tex]W = P \ sin \ \alpha + T_{AC} \ sin \ 30^0[/tex]

replacing [tex]\alpha \simeq 75^0[/tex] and [tex]P =\dfrac{ T_{AC} \ cos \ 30^0}{\ cos \ 75^0}[/tex]

[tex]W =\dfrac{T_{AC} \ cos \ 30^0}{cos \ 75^0}\times sin \ 75^0 + T_{AC} \ sin \ 30^0[/tex]

Also, replacing W for (200 × 9.81) N

[tex]200 \times 9.81 =\dfrac{T_{AC} \ cos \ 30^0}{cos \ 75^0}\times sin \ 75^0 + T_{AC} \ sin \ 30^0[/tex]

[tex]200 \times 9.81 = T_{AC} \ cos \ 30^0 \ tan \ 75^0 + T_{AC} \ sin \ 30^0[/tex]

[tex]1962= T_{AC} \ ( cos \ 30^0 \ tan \ 75^0 + \ sin \ 30^0)[/tex]

[tex]1962= T_{AC} \ (0.8660\times 3.732 + 0.5)[/tex]

[tex]1962= T_{AC} \ (3.231912 + 0.5)[/tex]

[tex]1962= T_{AC} \ (3.731912)[/tex]

[tex]T_{AC} = \dfrac{1962}{ \ (3.731912)}[/tex]

[tex]T_{AC} = 525.736 \ N[/tex]

From [tex]P =\dfrac{ T_{AC} \ cos \ 30^0}{\ cos \ 75^0}[/tex]

[tex]P =\dfrac{ 525.736 \ cos \ 30^0}{\ cos \ 75^0}[/tex]

[tex]P =\dfrac{ 525.736 \times0.866}{0.2588}[/tex]

P = 1759.22 N

Thus, the force P required  is 1759.22 N

Ver imagen ajeigbeibraheem
Ver imagen ajeigbeibraheem
Ver imagen ajeigbeibraheem
Q&A Education