Respuesta :

Answer:

[tex]\mathbf{\iint _D y^2 dA= \dfrac{22}{3}}[/tex]

Step-by-step explanation:

From the image attached below;

We need to calculate the limits of x and y to find the double integral

We will notice that y varies from 1 to 2

The line equation for (0,1),(1,2) is:

[tex]y-1 = \dfrac{2-1}{1-0}(x-0)[/tex]

y - 1 = x

The line equtaion for (1,2),(4,1) is:

[tex]y-2 = \dfrac{1-2}{4-1}(x-1) \\ \\ y-2 = -\dfrac{1}{3}(x-1)[/tex]

-3(y-2) = (x -1)

-3y + 6 = x - 1

-x = 3y - 6 - 1

-x = 3y  - 7

x = -3y + 7

This implies that x varies from y - 1 to -3y + 7

Now, the region D = {(x,y) | 1 ≤ y ≤ 2, y - 1 ≤ x ≤ -3y + 7}

The double integral can now be calculated as:

[tex]\iint _D y^2 dA= \int ^2_1 \int ^{-3y +7}_{y-1} \ 2y ^2 \ dx \ dy[/tex]

[tex]\iint _D y^2 dA= \int ^2_1 \bigg[ 2xy ^2 \bigg]^{-3y+7}_{y-1} \ dy[/tex]

[tex]\iint _D y^2 dA= \int ^2_1 \bigg[2(-3y+7)y^2-2(y-1)y^2 \bigg ] \ dy[/tex]

[tex]\iint _D y^2 dA= \int ^2_1 \bigg[-6y^3 +14y^2 -2y^3 +2y^2 \bigg ] \ dy[/tex]

[tex]\iint _D y^2 dA= \int ^2_1 \bigg[-8y^3 +16y^2 \bigg ] \ dy[/tex]

[tex]\iint _D y^2 dA= \bigg[-8(\dfrac{y^4}{4}) +16(\dfrac{y^3}{3})\bigg ] ^2_1[/tex]

[tex]\iint _D y^2 dA= \bigg[-8(\dfrac{16}{4}-\dfrac{1}{4}) +16(\dfrac{8}{3}-\dfrac{1}{3})\bigg ][/tex]

[tex]\iint _D y^2 dA= \bigg[-8(\dfrac{15}{4}) +16(\dfrac{7}{3})\bigg ][/tex]

[tex]\iint _D y^2 dA= -30 + \dfrac{112}{3}[/tex]

[tex]\iint _D y^2 dA= \dfrac{-90+112}{3}[/tex]

[tex]\mathbf{\iint _D y^2 dA= \dfrac{22}{3}}[/tex]

Ver imagen ajeigbeibraheem

To answer this question, we need, first get the equations for the lines that enclosed the surface, and integrate according to the limits these equations give.

The solution is:

A = 22/3 square units

Let´s call points:

P ( 0 , 1 )    Q ( 1 , 2 ) and R ( 4 , 1 )

The equation for the line between P and R is:

y = 1

The equation for the line between P and Q is:

Slope-intercept equation is  y = m×x + b

The slope   m₁ = ( 2 - 1 ) / ( 1 - 0 )    m₁ = 1

and the line passes over the point  x = 0  y = 1   ; then

1 = 0 +b           b = 1

y = x + 1            ⇒    x = y - 1  

The equation  for the line between Q and R is:

m₂ = ( 1 - 2 ) / ( 4 - 1)    m₂ = - 1/3

y = ( -1/3)× x + b

when x = 1    y = 2

2 = ( - 1/3)×(1) + b

2 + 1/3 = b

b = 7/3

y = - (x/3) + 7/3            ⇒  x = 7 - 3×y

The double  integral becomes:

A = 2×∫∫ y² dx dy          ⇒   A = 2 ×∫₁² y²dy ∫dx  | (y - 1 ) y ( 7 - 3y)

A = 2 ×∫₁² y²dy  × x |  ( y - 1 ) y ( 7 - 3y)

A = 2 ×∫₁² y²dy  × [ 7 - 3×y - ( y - 1 )]

A = 2 ×∫₁² y²dy  × (8 - 4×y )      ⇒     A = 2 ×∫₁² (8×y² - 4×y³ ) dy

A = 2 × [ (8/3)×y³ - y⁴ | ₁²

A = 2 × [ 64/3 - 16 - (8/3) + 1 ]

A = 2  × ( 56/3 - 15 )

A = 2  × ( 56 - 45 /3)

A = 2 × 11/3

A = 22/3 square units

Related Link :https://brainly.com/question/9825328

Ver imagen jtellezd
Q&A Education