What is the orbital velocity in km/s and period in hours of a ring particle at the outer edge of Saturn's A ring

Respuesta :

Answer:

The orbital velocity [tex]v = 16.4 \ km/s[/tex]

The period is  [tex]T = 14.8 \ hours[/tex]

Explanation:

Generally centripetal force acting ring particle is equal to the gravitational  force between the ring particle and the planet , this is mathematically represented as

       [tex]\frac{GM_s * m }{r^2 } = m w^2 r[/tex]

=>    [tex]w = \sqrt{ \frac{GM}{r^3} }[/tex]

Here G is the gravitational constant with value  [tex]G = 6.67*10^{-11}[/tex]

        [tex]M_s[/tex]  is the mass of with value  [tex]M_s =5.683*10^{26} \ kg[/tex]

        r is the is distance from the center of the  to the  outer edge of the  A ring

i.e r = R  + D  

Here R  is the radius of the planet   with value  [tex]R = 60300 \ km[/tex]

         D  is the distance from the  equator to the outer edge of the  A ring with value  [tex]D = 80000 \ kg[/tex]

So  

       [tex]r =80000 + 60300[/tex]

=>    [tex]r =140300 \ km = 1.4*10^{8} \ m[/tex]

So

    =>    [tex]w = \sqrt{ \frac{ 6.67*10^{-11}* 5.683*10^{26}}{[1.4*10^{8}]^3} }[/tex]

    =>    [tex]w = 1.175*10^{-4} \ rad/s[/tex]

Generally the orbital velocity is mathematically represented as

       [tex]v = w * r[/tex]

=>     [tex]v = 1.175*10^{-4} * 1.4*10^{8}[/tex]

=>     [tex]v = 1.64*10^{4} \ m /s = 16.4 \ km/s[/tex]

Generally the period is mathematically represented as

     [tex]T = \frac{2 \pi }{w }[/tex]

=> [tex]T = \frac{2 * 3.142 }{ 1.175 *10^{-4} }[/tex]

=> [tex]T = 53473 \ second = 14.8 \ hours[/tex]

Answer:

The orbital velocity [tex]v = 16.4 \ km/s[/tex]

The period is  [tex]T = 14.8 \ hours[/tex]

Explanation:

Generally centripetal force acting ring particle is equal to the gravitational  force between the ring particle and the , this is mathematically represented as

       [tex]\frac{GM_s * m }{r^2 } = m w^2 r[/tex]

Q&A Education