The rectangular coordinates of a point are given. Find polar coordinates (r,theta) of this point with expressed in radians. Let r>0 and -2pi
(-2(square root)3,2)

PLEASE HELP URGENT

Respuesta :

Answer:

The answer is "The Polar coordinates (r,[tex]\theta)[/tex] =[tex](4,\frac{5 \pi}{6})[/tex]"

Step-by-step explanation:

Given point:

[tex]\to (-2\sqrt{3},2)[/tex]

Formula:

[tex]r=\sqrt{x^2+y^2}\\[/tex]

  [tex]=\sqrt{(-2\sqrt{3})^2+(2)^2}\\\\=\sqrt{12+4}\\\\=\sqrt{16}\\\\=\sqrt{4^2}\\\\=4[/tex]

[tex]\therefore \\\\ \tan \theta= \frac{y}{x}\\\\[/tex]

[tex]\tan \theta=\frac{2}{-2\sqrt{3}}\\\\ \tan \theta= -\frac{1}{\sqrt{3}}\\\\ \tan \theta= \frac{5\pi}{6}\\\\ \theta= \frac{5\pi}{6}[/tex]

The Polar coordinates (r,[tex]\theta)[/tex] =[tex](4,\frac{5 \pi}{6})[/tex].

Q&A Education