Respuesta :

Answer:

[tex]a'(d) = \frac{d}{5} + \frac{3}{5}[/tex]

[tex]a(a'(d)) = a'(a(d)) = d[/tex]

Step-by-step explanation:

Given

[tex]a(d) = 5d - 3[/tex]

Solving (a): Write as inverse function

[tex]a(d) = 5d - 3[/tex]

Represent a(d) as y

[tex]y = 5d - 3[/tex]

Swap positions of d and y

[tex]d = 5y - 3[/tex]

Make y the subject

[tex]5y = d + 3[/tex]

[tex]y = \frac{d}{5} + \frac{3}{5}[/tex]

Replace y with a'(d)

[tex]a'(d) = \frac{d}{5} + \frac{3}{5}[/tex]

Prove that a(d) and a'(d) are inverse functions

[tex]a'(d) = \frac{d}{5} + \frac{3}{5}[/tex] and [tex]a(d) = 5d - 3[/tex]

To do this, we prove that:

[tex]a(a'(d)) = a'(a(d)) = d[/tex]

Solving for [tex]a(a'(d))[/tex]

[tex]a(a'(d)) = a(\frac{d}{5} + \frac{3}{5})[/tex]

Substitute [tex]\frac{d}{5} + \frac{3}{5}[/tex] for d in  [tex]a(d) = 5d - 3[/tex]

[tex]a(a'(d)) = 5(\frac{d}{5} + \frac{3}{5}) - 3[/tex]

[tex]a(a'(d)) = \frac{5d}{5} + \frac{15}{5} - 3[/tex]

[tex]a(a'(d)) = d + 3 - 3[/tex]

[tex]a(a'(d)) = d[/tex]

Solving for: [tex]a'(a(d))[/tex]

[tex]a'(a(d)) = a'(5d - 3)[/tex]

Substitute 5d - 3 for d in [tex]a'(d) = \frac{d}{5} + \frac{3}{5}[/tex]

[tex]a'(a(d)) = \frac{5d - 3}{5} + \frac{3}{5}[/tex]

Add fractions

[tex]a'(a(d)) = \frac{5d - 3+3}{5}[/tex]

[tex]a'(a(d)) = \frac{5d}{5}[/tex]

[tex]a'(a(d)) = d[/tex]

Hence:

[tex]a(a'(d)) = a'(a(d)) = d[/tex]

Q&A Education