Respuesta :

Answer:

Graph 2 has a different constant of proportionality

Step-by-step explanation:

See attachment for graphs

To calculate the constant of proportionality, we simply determine the slope of each graph using

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where x's and y's are corresponding values of x and y

Graph 1:

[tex](x_1,y_1) = (0,0)[/tex]

[tex](x_2,y_2) = (0.8,4)[/tex]

Substitute these values in: [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{4 - 0}{0.8 - 0}[/tex]

[tex]m = \frac{4}{0.8}[/tex]

[tex]m = 5[/tex]

Graph 2:

[tex](x_1,y_1) = (0,0)[/tex]

[tex](x_2,y_2) = (10,55)[/tex]

Substitute these values in: [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{55 - 0}{10 - 0}[/tex]

[tex]m = \frac{55}{10}[/tex]

[tex]m = 5.5[/tex]

Graph 3:

[tex](x_1,y_1) = (0,0)[/tex]

[tex](x_2,y_2) = (4,20)[/tex]

Substitute these values in: [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{20 - 0}{4 - 0}[/tex]

[tex]m = \frac{20}{4}[/tex]

[tex]m = 5[/tex]

Graph 4:

[tex](x_1,y_1) = (0,0)[/tex]

[tex](x_2,y_2) = (10,50)[/tex]

Substitute these values in: [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{50 - 0}{10 - 0}[/tex]

[tex]m = \frac{50}{10}[/tex]

[tex]m = 5[/tex]

From the calculations above, graph 2 has a different constant of proportionality of 5.5 while others have 5 as their constant of proportionality

Ver imagen MrRoyal
Q&A Education