Stephanie gets an average of 11 calls during her 8 hour work day. What is the probability that Stephanie will get more than 4 calls in a 2 hour portion of her work day

Respuesta :

Answer:

0.145

Step-by-step explanation:

Suppose λ = average number of an event occurring in an interval of a presented  length; &

x =  no. of events occurring in an interval length t

Thus, x has a Poisson distribution with parameter λt.

i.e.

[tex]P[X=k] = \dfrac{(\lambda t)^k\times e^{-\lambda t}}{k!} \ \ \ where; k = 0,1,2 ...[/tex]

Given that:

The average number of call every 8 hours = 11

Then, the parameter for the Poisson process [tex]\lambda =\dfrac{11}{8}[/tex]

where;

t = 2 hours

[tex]\lambda t = \dfrac{11}{8}\times 2[/tex]

[tex]\lambda t = \dfrac{11}{4}[/tex]

Also,

x = no. of calls occurring at an interval of length 2

The required probability is as follows:

P(x > 4) = 1 - [P ( x≤ 4) ]

[tex]=1 - [ P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) ][/tex]

[tex]= 1 - \bigg [ \dfrac{(\dfrac{11}{4})^0 \times e^{-11/4}}{0!}+\dfrac{(\dfrac{11}{4})^1 \times e^{-11/4}}{1!}+ \dfrac{(\dfrac{11}{4})^2 \times e^{-11/4}}{2!}+ \dfrac{(\dfrac{11}{4})^3 \times e^{-11/4}}{3!}+ \dfrac{(\dfrac{11}{4})^4 \times e^{-11/4}}{4!} \bigg ][/tex]

[tex]= 1 - \begin {bmatrix} 1 + \dfrac{11}{4} + \dfrac{\bigg (\dfrac{11}{4}\bigg)^2}{2}+\dfrac{\bigg (\dfrac{11}{4}\bigg)^3}{6}+\dfrac{\bigg (\dfrac{11}{4}\bigg)^4}{24} \end {bmatrix} e^{-11/4}[/tex]

[tex]= 1 - [ 1 + 2.75 + 3.78125 + 3.466145833 + 2.3829] \ e^{-11/4}[/tex]

= 1 - [13.38037]× 0.06393

= 1 - 0.855407

= 0.14459

≅ 0.145    ( to  3 decimal place)

Q&A Education