Respuesta :

Answer:

[tex]m\angle ADC=132^\circ[/tex]

Step-by-step explanation:

The Law of Sines

It is an equation relating the lengths of the sides of a triangle to the sines of its opposite angles. If A, B, and C are the lengths of the sides and a,b,c are their respective opposite angles, then:

[tex]\displaystyle \frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin c}[/tex]

We have completed the figure with the variable x for angle BDA. Thus

[tex]\displaystyle \frac{35}{\sin 120^\circ}=\frac{30}{\sin x}[/tex]

Solving for x:

[tex]\displaystyle \sin x=\frac{30\sin 120^\circ}{35}[/tex]

Calculating:

[tex]\sin x=0.742[/tex]

[tex]x=\arcsin 0.742[/tex]

[tex]x\approx 48^\circ[/tex]

Since angles ADC and x are linear, their sum is 180° and:

[tex]m\angle ADC=180^\circ-48^\circ[/tex]

[tex]\mathbf{m\angle ADC=132^\circ}[/tex]

Ver imagen elcharly64
Q&A Education