Respuesta :

Answer:

Average rate of change=22

Step-by-step explanation:

We need to find the average rate of change of the equation: [tex]y=4x^2-10x+2[/tex]between f(3) and f(5).

The formula used to find average rate of change is: [tex]Average \ rate \ of \ change=\frac{f(b)-f(a)}{b-a}[/tex]

In the given question we have a=3 and b =5

Finding f(a) i.e f(3)

[tex]f(3)=4(3)^2-10(3)+2\\f(3)=4(9)-30+2\\f(3)=36-30+2\\f(3)=8[/tex]

Finding f(b0 i.e f(5)

[tex]f(5)=4(5)^2-10(5)+2\\f(5)=4(25)-50+2\\f(5)=100-50+2\\f(5)=52[/tex]

Putting values of f(3)=8 and f(5)=52 to find average rate of change

[tex]Average \ rate \ of \ change=\frac{f(b)-f(a)}{b-a}\\Average \ rate \ of \ change=\frac{52-8}{5-3}\\Average \ rate \ of \ change=\frac{44}{2}\\Average \ rate \ of \ change=22[/tex]

So, Average rate of change=22

Q&A Education