Respuesta :

Answer:

See below

Step-by-step explanation:

DOK 3

[tex] In\: \triangle ABC, \:\\

m\angle A + m\angle B + m\angle C = 180\degree \\\\

m\angle A + 76\degree + m\angle C = 180\degree \\\\

m\angle A + m\angle C = 180\degree - 76\degree \\\\

m\angle A + m\angle C = 104\degree \\\\

\frac{1}{2} (m\angle A + m\angle C) =\frac{1}{2}\times 104\degree \\\\

\red{\bold{\frac{1}{2} (m\angle A + m\angle C) = 52\degree}}... (1)\\[/tex]

Since, AD and DC are bisectors of [tex] \angle A \: \&\: \angle C[/tex] respectively.

[tex] m\angle DAC= \frac{1}{2}m\angle A... (2)\\\\

m\angle DCA= \frac{1}{2}m\angle C...(3) \\[/tex]

Adding equations (2) & (3), we find:

[tex] m\angle DAC+m\angle DCA= \frac{1}{2}(m\angle A+m\angle C).... (4)\\[/tex]

From equations (1) & (4)

[tex] m\angle DAC+m\angle DCA= 52\degree... (5)\\\\

In \triangle ADC, \\

m\angle ADC + m\angle DAC +m\angle DCA = 180\degree... (6)\\\\[/tex]

From equations (5) & (6), we find:

[tex] m\angle ADC + 104\degree = 180\degree... (6)\\\\

m\angle ADC = 180\degree - 52\degree \\\\

\huge\purple {\boxed{m\angle ADC = 128\degree}}

[/tex]

DOK 4:

Let the measures of the angels 1, 2 and 3 be 4x, 5x and 6x respectively.

Therefore,

4x + 5x + 6x = 180°

15x = 180°

x = 180°/15

x = 12°

4x = 4*12° = 48°

5x = 5*12° = 60°

6x = 6*12° = 72°

[tex] m\angle 1 = 48\degree \\\\

m\angle 2 = 60\degree \\\\

m\angle 3 = 72\degree \\[/tex]

Q&A Education