Answer:
The trigonometric ratios associated with (-5, -4) are [tex]\sin t \approx -0.625[/tex], [tex]\cos t \approx -0.781[/tex] and [tex]\tan t = 0.8[/tex].
Step-by-step explanation:
Let [tex]\vec u = (x,y)[/tex]. From Trigonometry, we remember the following definitions for the trigonometric ratios, dimensionless:
[tex]\sin t = \frac{y}{\sqrt{x^{2}+y^{2}}}[/tex] (1)
[tex]\cos t = \frac{x}{\sqrt{x^{2}+y^{2}}}[/tex] (2)
[tex]\tan t = \frac{y}{x}[/tex] (3)
If we know that [tex]x = -5[/tex] and [tex]y = -4[/tex], then the trigonometric ratios are, respectively:
[tex]\sin t = \frac{-4}{\sqrt{(-5)^{2}+(-4)^{2}}}[/tex]
[tex]\sin t \approx -0.625[/tex]
[tex]\cos t = \frac{-5}{\sqrt{(-5)^{2}+(-4)^{2}}}[/tex]
[tex]\cos t \approx -0.781[/tex]
[tex]\tan t = \frac{-4}{-5}[/tex]
[tex]\tan t = 0.8[/tex]
The trigonometric ratios associated with (-5, -4) are [tex]\sin t \approx -0.625[/tex], [tex]\cos t \approx -0.781[/tex] and [tex]\tan t = 0.8[/tex].