Respuesta :

Space

Answer:

[tex]f'(x) = 0[/tex]

General Formulas and Concepts:

Algebra I

Functions

  • Function Notation

Calculus

Limits

Differentiation

  • Derivatives
  • Derivative Notation
  • Definition of a Derivative:                                                                             [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle f(x) = 7[/tex]

Step 2: Differentiate

  1. Substitute in function values [Definition of a Derivative]:                           [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{7 - 7}{h}[/tex]
  2. Simplify:                                                                                                         [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{0}{h}[/tex]
  3. Evaluate limit:                                                                                                 [tex]\displaystyle f'(x) = 0[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Differentiation

Q&A Education