Respuesta :
Answer:
[tex]f'(x) = 0[/tex]
General Formulas and Concepts:
Algebra I
Functions
- Function Notation
Calculus
Limits
Differentiation
- Derivatives
- Derivative Notation
- Definition of a Derivative: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = 7[/tex]
Step 2: Differentiate
- Substitute in function values [Definition of a Derivative]: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{7 - 7}{h}[/tex]
- Simplify: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{0}{h}[/tex]
- Evaluate limit: [tex]\displaystyle f'(x) = 0[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation