Respuesta :

Answer:

The function represents a direct variation

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a direct variation if it can be expressed in the form [tex]y/x=k[/tex] or [tex]y=kx[/tex]

In a linear direct variation the line passes through the origin and the constant of proportionality k is equal to the slope m

Let

[tex]A(0,0)[/tex] ------> the line passes through the origin

[tex]B(2,10)[/tex]

Find the value of k------> substitute the value of x and y

[tex]y/x=k[/tex]-----> [tex]k=10/2=5[/tex]

[tex]C(4,20)[/tex]

Find the value of k------> substitute the value of x and y

[tex]y/x=k[/tex]-----> [tex]k=20/4=5[/tex]

[tex]D(6,30)[/tex]

Find the value of k------> substitute the value of x and y

[tex]y/x=k[/tex]-----> [tex]k=30/6=5[/tex]

[tex]E(8,40)[/tex]

Find the value of k------> substitute the value of x and y

[tex]y/x=k[/tex]-----> [tex]k=40/8=5[/tex]

The value of k is equal in all the points of the table and the line passes through the origin

therefore

The function represents a direct variation

the equation of the direct variation is equal to

[tex]f(x)=5x[/tex]

Answer:b

Step-by-step explanation:

Q&A Education