Which ordered pairs are solutions to the inequality y−2x≤−3?

Select each correct answer.

(5, −3)(5, −3)

(0, −2)(0, −2)

(−6, −3)(−6, −3)

(1, −1)(1, −1)

(7, 12)

Respuesta :

we will proceed to resolve each case to determine the solution

we have

[tex]y-2x \leq -3[/tex]

[tex]y\leq2x-3[/tex]

we know that

If an ordered pair is the solution of the inequality, then it must satisfy the inequality.

case a) [tex](5,-3)[/tex]

Substitute the value of x and y in the inequality

[tex]-3\leq2*5-3[/tex]

[tex]-3\leq7[/tex] -------> is true

so

The ordered pair [tex](5,-3)[/tex] is a solution

case b) [tex](0,-2)[/tex]

Substitute the value of x and y in the inequality

[tex]-2\leq2*0-3[/tex]

[tex]-2\leq-3[/tex] -------> is False

so

The ordered pair [tex](0,-2)[/tex] is not a solution

case c) [tex](-6,-3)[/tex]

Substitute the value of x and y in the inequality

[tex]-3\leq2*-6-3[/tex]

[tex]-3\leq-15[/tex] -------> is False

so

The ordered pair[tex](-6,-3)[/tex] is not a solution

case d) [tex](1,-1)[/tex]

Substitute the value of x and y in the inequality

[tex]-1\leq2*1-3[/tex]

[tex]-1\leq-1[/tex] -------> is True

so

The ordered pair [tex](1,-1)[/tex] is a solution

case e) [tex](7,12)[/tex]

Substitute the value of x and y in the inequality

[tex]12\leq2*7-3[/tex]

[tex]12\leq11[/tex] -------> is False

so

The ordered pair [tex](7,12)[/tex] is not a solution

Verify

using a graphing tool

see the attached figure

the solution is the shaded  area below the line

The points A and D lies on the shaded area, therefore the ordered pairs A and D are solution of the inequality

Ver imagen calculista
Q&A Education