Respuesta :

f(x) = 3 - 2x
g(x) = 1/(x + 5)

(f/g)(x) = (3 - 2x) / 1/(x + 5) = (3 - 2x)(x + 5)
(f/g)(8) = (3 - 2(8))(8 + 5) = -13 x 13 = -169

Answer:

An Arithmetic Combination states that  two functions f and g at any x i.e in the domain of both f and g, with one exception.

The quotient [tex]\frac{f}{g}[/tex] is not defined at values of x, where g is equal to 0 or we can say that both the functions must be defined at a point for the combination to be defined.

[tex](f/g)(x) =[/tex] [tex]\frac{f(x)}{g(x)}[/tex]

Given: f(x) = 3-2x and g(x) = [tex]\frac{1}{x+5}[/tex]

Then, using arithmetic combination of function definition:

[tex](f/g)(8)=\frac{f(8)}{g(8)}[/tex]                 ......[1]

Now, first find the value of f(9) and g(8) ;

f(8) =3-2(8) = 3-16 = -13 and

[tex]g(8) =\frac{1}{8+5} =\frac{1}{13}[/tex]

Substitute these in equation [1] ;

[tex](f/g)(8) =\frac{-13}{\frac{1}{13}} = -13 \times 13 =-169[/tex]

Therefore, the value of (f/g)(8) is; -169



Q&A Education