Answer:
[tex]\frac{3(6)-1}{2(6)+1}\text{ or }\frac{18-1}{12+1}\text{ or }\frac{17}{13}[/tex]
Step-by-step explanation:
Given functions,
[tex]r(x) = 3x -1------(1)[/tex]
[tex]s(x) = 2x + 1-----(2)[/tex]
[tex]\because \frac{r}{s}(6)=\frac{r(x)}{s(x)}[/tex]
From equation (1) and (2),
[tex]\frac{r}{s}(x)=\frac{3x-1}{2x+1}[/tex]
Put x = 6,
[tex]\frac{r}{s}(6) = \frac{3(6)-1}{2(6)+1}=\frac{18-1}{12+1}=\frac{17}{13}[/tex]