Respuesta :

Answer:

The first step is to divide all the terms by the coefficient of [tex]x^{2}[/tex] which is 2.

The solutions to the quadratic equation [tex]2x^2\:-\:5x\:+\:67\:=\:0[/tex] are:

[tex]x=\frac{5}{4}+i\frac{\sqrt{511}}{4},\:x=\frac{5}{4}-i\frac{\sqrt{511}}{4}[/tex]

Step-by-step explanation:

Considering the equation

[tex]2x^2\:-\:5x\:+\:67\:=\:0[/tex]

The first step is to divide all the terms by the coefficient of [tex]x^{2}[/tex] which is 2.

so

[tex]\frac{2x^2-5x}{2}=\frac{-67}{2}[/tex]

[tex]x^2-\frac{5x}{2}=-\frac{67}{2}[/tex]

Lets now solve the equation by completeing the remaining steps

Write equation in the form: [tex]x^2+2ax+a^2=\left(x+a\right)^2[/tex]

Solving for [tex]a[/tex],

[tex]2ax=-\frac{5}{2}x[/tex]

[tex]a=-\frac{5}{4}[/tex]

[tex]\mathrm{Add\:}a^2=\left(-\frac{5}{4}\right)^2\mathrm{\:to\:both\:sides}[/tex]

[tex]x^2-\frac{5x}{2}+\left(-\frac{5}{4}\right)^2=-\frac{67}{2}+\left(-\frac{5}{4}\right)^2[/tex]

[tex]x^2-\frac{5x}{2}+\left(-\frac{5}{4}\right)^2=-\frac{511}{16}[/tex]

Completing the square

[tex]\left(x-\frac{5}{4}\right)^2=-\frac{511}{16}[/tex]

Since, you had required to know the first step in completing the square for the equation above, I hope you have got the point, but let me quickly solve the remaining solution.

For [tex]f^2\left(x\right)=a[/tex] the solution are [tex]f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]

Solving

[tex]x-\frac{5}{4}=\sqrt{-\frac{511}{16}}[/tex]

[tex]x-\frac{5}{4}=\sqrt{-1}\sqrt{\frac{511}{16}}[/tex]

[tex]x-\frac{5}{4}=i\sqrt{\frac{511}{16}}[/tex]       ∵ Applying imaginary number rule [tex]\sqrt{-1}=i[/tex]

[tex]x-\frac{5}{4}=i\frac{\sqrt{511}}{\sqrt{16}}[/tex]

[tex]-\frac{5}{4}=i\frac{\sqrt{511}}{4}[/tex]

[tex]x=\frac{5}{4}+i\frac{\sqrt{511}}{4}[/tex]

Similarly, solving

[tex]x-\frac{5}{4}=-\sqrt{-\frac{511}{16}}[/tex]

[tex]x-\frac{5}{4}=-i\frac{\sqrt{511}}{4}[/tex]    ∵ Applying imaginary number rule  [tex]\sqrt{-1}=i[/tex]

[tex]x=\frac{5}{4}-i\frac{\sqrt{511}}{4}[/tex]

Therefore, the solutions to the quadratic equation are:

[tex]x=\frac{5}{4}+i\frac{\sqrt{511}}{4},\:x=\frac{5}{4}-i\frac{\sqrt{511}}{4}[/tex]

Q&A Education