The sum of the digits of a two-digit number is 8. The difference between the number and the reversed number is 10 more than the reversed number. Find the number.

Respuesta :

Answer:

The number is 62

Step-by-step explanation:

Let the digits of the number be T and U;

A 2 digit number is represented as: 10T + U

So,

[tex]T + U = 8[/tex]

[tex]10T + U - (10U + T) = 10 + 10U + T[/tex]

Required

Find the digit

Make U the subject in the first equation

[tex]U = 8 - T[/tex]

Substitute 8 - T for U in the second

[tex]10T + U - (10U + T) = 10 + 10U + T[/tex]

[tex]10T + 8 - T - (10*(8-T) + T) = 10 + 10(8 - T) + T[/tex]

[tex]10T + 8 - T - (80-10T + T) = 10 + 80 - 10T+ T[/tex]

[tex]10T + 8 - T -80+10T - T = 10 + 80 - 10T+ T[/tex]

Collect Like Terms

[tex]10T + 10T - T- T + 8 -80 = 10 + 80 - 10T+ T[/tex]

[tex]18T -72 = 90 - 9T[/tex]

[tex]9T + 18T = 90 + 72[/tex]

[tex]27T = 162[/tex]

[tex]T = 162/27[/tex]

[tex]T = 6[/tex]

Recall that:

[tex]U = 8 - T[/tex]

[tex]U = 8 - 6[/tex]

[tex]U = 2[/tex]

Hence, the number is 62

Q&A Education