Respuesta :
Answer:
11
Step-by-step explanation:
\text{Compounded Daily:}
Compounded Daily:
A=P\left(1+\frac{r}{n}\right)^{nt}
A=P(1+
n
r
)
nt
Compound interest formula
A=70900\hspace{35px}P=37000\hspace{35px}r=0.057\hspace{35px}n=365
A=70900P=37000r=0.057n=365
Given values
70900=
70900=
\,\,37000\left(1+\frac{0.057}{365}\right)^{365t}
37000(1+
365
0.057
)
365t
Plug in values
70900=
70900=
\,\,37000(1.0001562)^{365t}
37000(1.0001562)
365t
Simplify
\frac{70900}{37000}=
37000
70900
=
\,\,\frac{37000(1.0001562)^{365t}}{37000}
37000
37000(1.0001562)
365t
Divide by 37000
1.9162162=
1.9162162=
\,\,1.0001562^{365t}
1.0001562
365t
\log\left(1.9162162\right)=
log(1.9162162)=
\,\,\log\left(1.0001562^{\color{blue}{365t}}\right)
log(1.0001562
365t
)
Take the log of both sides
\log\left(1.9162162\right)=
log(1.9162162)=
\,\,\color{blue}{365t}\log\left(1.0001562\right)
365tlog(1.0001562)
Bring exponent to the front
\frac{\log\left(1.9162162\right)}{\log\left(1.0001562\right)}=
log(1.0001562)
log(1.9162162)
=
\,\,\frac{365t\log\left(1.0001562\right)}{\log\left(1.0001562\right)}
log(1.0001562)
365tlog(1.0001562)
Divide both sides by log(1.0001562)
4164.8632402=
4164.8632402=
\,\,365t
365t
Use calculator
\frac{4164.8632402}{365}=
365
4164.8632402
=
\,\,\frac{365t}{365}
365
365t
Divide by 365
11.4105842=
11.4105842=
\,\,t
t
t\approx
t≈
\,\,11
11
Using compound interest, it is found that it would take 11 years for the value of the account to reach $70,900.
What is compound interest?
The amount of money earned, in compound interest, after t years, is given by:
[tex]A(t) = P\left(1 + \frac{r}{n}\right)^{nt}[/tex]
In which:
- A(t) is the amount of money after t years.
- P is the principal(the initial sum of money).
- r is the interest rate(as a decimal value).
- n is the number of times that interest is compounded per year.
Hence, the parameters are given as follows:
[tex]A(t) = 70900, P = 37000, n = 365, r = 0.057[/tex]
We have to solve for t, then:
[tex]A(t) = P\left(1 + \frac{r}{n}\right)^{nt}[/tex]
[tex]70900 = 37000\left(1 + \frac{0.057}{365}\right)^{365t}[/tex]
[tex]\left(1 + \frac{0.057}{365}\right)^{365t} = \frac{70900}{37000}[/tex]
[tex]\left(1 + \frac{0.057}{365}\right)^{365t} = 1.91621622[/tex]
[tex](1.00015616)^{365t} = 1.91621622[/tex]
[tex]\log{(1.00015616)^{365t}} = \log{1.91621622}[/tex]
[tex]365t\log{1.00015616} = \log{1.91621622}[/tex]
[tex]t = \frac{\log{1.91621622}}{365\log{1.00015616}}[/tex]
t = 11.41
Rounding to the nearest year, it would take 11 years for the value of the account to reach $70,900.
More can be learned about compound interest at https://brainly.com/question/25781328
#SPJ2