Similar triangles may or may not be congruent.
- The corresponding parts of XYZ and NPQ are: [tex]\mathbf{Z \cong Q}[/tex] , [tex]\mathbf{YZ \cong PQ}[/tex] , [tex]\mathbf{X \cong N}[/tex] , [tex]\mathbf{NQ \cong XQ}[/tex] , [tex]\mathbf{PN \cong YX}[/tex].
- The unknown values are: [tex]\mathbf{y = 18}[/tex] , [tex]\mathbf{z = 12}[/tex] , [tex]\mathbf{L = 60}[/tex] , [tex]\mathbf{C = 60}[/tex], [tex]\mathbf{AC = 24}[/tex].
- The congruent parts are: KL and RQ, KJ and RS, QS and LJ
Question 1 to 6:
Triangles XYZ and NPQ are similar triangles.
This means that:
Angles Z and Q, lines YZ and PQ, angles P and Y, angles X and N, lines NQ and XZ, lines PN and YX are corresponding sides and angles
Question 7 to 12:
Triangles LMN and CBA are similar triangles.
This means that:
[tex]\mathbf{7z+6 = 5y}[/tex]
[tex]\mathbf{2y-12 = z + 12}[/tex]
Collect like terms
[tex]\mathbf{2y= z + 12+12}[/tex]
[tex]\mathbf{2y= z + 24}[/tex]
Make z the subject
[tex]\mathbf{z = 2y -24}[/tex]
Substitute [tex]\mathbf{z = 2y -24}[/tex] in [tex]\mathbf{7z+6 = 5y}[/tex]
[tex]\mathbf{7(2y -24) + 6 = 5y}[/tex]
[tex]\mathbf{14y -168 + 6 = 5y}[/tex]
[tex]\mathbf{14y -162 = 5y}[/tex]
Collect like terms
[tex]\mathbf{14y -5y = 162}[/tex]
[tex]\mathbf{9y = 162}[/tex]
Divide both sides by 9
[tex]\mathbf{y = 18}[/tex]
Recall that: [tex]\mathbf{z = 2y -24}[/tex]
[tex]\mathbf{z = 2 \times 18 - 24}[/tex]
[tex]\mathbf{z = 12}[/tex]
[tex]\mathbf{L = 60}[/tex]
[tex]\mathbf{LN = 2y - 12}[/tex]
[tex]\mathbf{LN = 2 \times 18 - 12}[/tex]
[tex]\mathbf{LN = 24}[/tex]
[tex]\mathbf{C = L}[/tex]
[tex]\mathbf{C = 60}[/tex]
[tex]\mathbf{AC = LN}[/tex]
[tex]\mathbf{AC = 24}[/tex]
Question 13:
The congruent parts are: KL and RQ, KJ and RS, QS and LJ
Read more about congruent and similar triangles at:
https://brainly.com/question/19589236