3. From the table below, find Prof. Xin expected value of lateness. (5 points) Lateness P(Lateness) On Time 4/5 1 Hour Late 1/10 2 Hours Late 1/20 3 Hours Late 1/20​

Respuesta :

Answer:

The expected value of lateness [tex]\frac{7}{20}[/tex] hours.

Step-by-step explanation:

The probability distribution of lateness is as follows:

  Lateness             P (Lateness)

  On Time                     4/5

1 Hour Late                  1/10

2 Hours Late                1/20

3 Hours Late                1/20​

The formula of expected value of a random variable is:

[tex]E(X)=\sum x\cdot P(X=x)[/tex]

Compute the expected value of lateness as follows:

[tex]E(X)=\sum x\cdot P(X=x)[/tex]

         [tex]=(0\times \frac{4}{5})+(1\times \frac{1}{10})+(2\times \frac{1}{20})+(3\times \frac{1}{20})\\\\=0+\frac{1}{10}+\frac{1}{10}+\frac{3}{20}\\\\=\frac{2+2+3}{20}\\\\=\frac{7}{20}[/tex]

Thus, the expected value of lateness [tex]\frac{7}{20}[/tex] hours.

An expected value is the theoretical mean value of a numerical experiment over many repetitions of the experiment.

Expected value of lateness is  [tex]\frac{7}{20}[/tex] hours.

Let us consider, P(x) is represent that probability of lateness and x represent number of hours late.

So, below a table is formed.

         x       0             1            2           3

      P(x)      4/5         1/10      1/20       1/20

From formula of expected value,

        E(x) = ∑ x P(x)

[tex]E(x)=(0*\frac{4}{5} )+(1*\frac{1}{10} )+(2*\frac{1}{20} )+(3*\frac{1}{20} )\\\\E(x)=0+\frac{1}{10}+\frac{1}{10}+\frac{3}{20} \\\\E(x)=\frac{7}{20}[/tex]

So, expected value of lateness is 7/20 hours.

Learn more:

https://brainly.com/question/23286309

Q&A Education