Respuesta :

Answer:

R=60

S=55

T=65

Step-by-step explanation:

[tex]\boldsymbol{m\angle R, m\angle S, m\angle T}[/tex] are equal to [tex]\boldsymbol{60^{\circ},55^{\circ},65^{\circ}}[/tex] respectively.

According to angle sum property of a triangle, sum of all angles of a triangle is equal to [tex]\boldsymbol{180^{\circ}}[/tex]

Let [tex]m\angle R=x[/tex]

As [tex]m\angle T[/tex] is [tex]5^{\circ}[/tex] more than [tex]m\angle R[/tex],

[tex]m\angle T=5^{\circ}+m\angle R[/tex]

[tex]\boldsymbol{m\angle R=m\angle T-5^{\circ}}[/tex]

Also,

[tex]m\angle S[/tex] is [tex]10^{\circ}[/tex] less than [tex]m\angle T[/tex],

[tex]\boldsymbol{m\angle S=m\angle T-10^{\circ}}[/tex]

So,

            [tex]\boldsymbol{m\angle R+m\angle S+m\angle T=180^{\circ}}[/tex]

[tex]m\angle T-5^{\circ}+m\angle T-10^{\circ}+m\angle T=180^{\circ}[/tex]

                       [tex]3m\angle T-5^{\circ}-10^{\circ}=180^{\circ}[/tex]

                                           [tex]m\angle T=\frac{195^{\circ}}{3}[/tex]

                                                    [tex]\boldsymbol{=65^{\circ}}[/tex]

[tex]m\angle R=65^{\circ}-5^{\circ}[/tex]

         [tex]\boldsymbol{=60^{\circ}}[/tex]

[tex]m\angle S=65^{\circ}-10^{\circ}[/tex]

        [tex]\boldsymbol{=55^{\circ}}[/tex]

For more information:

https://brainly.com/question/16903368?referrer=searchResults

Q&A Education