Respuesta :

Space

Answer:

[tex]\displaystyle h'(x) = \frac{1 + x - arcsin(x)\sqrt{1 - x^2}}{\sqrt{1 - x^2}(1 + x)^2}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Terms/Coefficients
  • Functions
  • Function Notation

Algebra II

  • Simplifying

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Derivative Rule [Quotient Rule]:                                                                           [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Special Trig Derivatives:

  • Arcsine:                                                                                                         [tex]\displaystyle \frac{d}{dx}[arcsin(x)] = \frac{1}{\sqrt{1 - x^2}}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle h(x) = \frac{arcsin(x)}{1 + x}[/tex]

Step 2: Differentiate

  1. Quotient Rule:                                                                                               [tex]\displaystyle h'(x) = \frac{(1 + x)\frac{d}{dx}[arcsin(x)] - \frac{d}{dx}[1 + x][arcsin(x)]}{(1 + x)^2}[/tex]
  2. Special Trig Derivative [Arcsine]:                                                                 [tex]\displaystyle h'(x) = \frac{(1 + x)(\frac{1}{\sqrt{1 - x^2}}) - \frac{d}{dx}[1 + x][arcsin(x)]}{(1 + x)^2}[/tex]
  3. Derivative Property [Addition/Subtraction]:                                                 [tex]\displaystyle h'(x) = \frac{(1 + x)(\frac{1}{\sqrt{1 - x^2}}) - (\frac{d}{dx}[1] + \frac{d}{dx}[x])[arcsin(x)]}{(1 + x)^2}[/tex]
  4. Basic Power Rule:                                                                                         [tex]\displaystyle h'(x) = \frac{(1 + x)(\frac{1}{\sqrt{1 - x^2}}) - 1[arcsin(x)]}{(1 + x)^2}[/tex]
  5. Multiply:                                                                                                         [tex]\displaystyle h'(x) = \frac{\frac{1 + x}{\sqrt{1 - x^2}} - arcsin(x)}{(1 + x)^2}[/tex]
  6. Rewrite [Multiply]:                                                                                         [tex]\displaystyle h'(x) = \frac{\frac{1 + x}{\sqrt{1 - x^2}} - arcsin(x)}{(1 + x)^2} \cdot \frac{\sqrt{1 - x^2}}{\sqrt{1 - x^2}}[/tex]
  7. Simplify [Multiply]:                                                                                         [tex]\displaystyle h'(x) = \frac{1 + x - arcsin(x)\sqrt{1 - x^2}}{\sqrt{1 - x^2}(1 + x)^2}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

Q&A Education