Answer:
UCL= 0.044
LCL=-0.004
Explanation:
Use following formula to calculate the UCL and LCL
UCL = p + z[tex]\sqrt{\frac{p(1-p)}{n}}[/tex]
Where
P = defect rate = 2% = 0.02
z = sigma control chart limit = 3
n = samploe size = 300
PLacing values in the formula
UCL = 0.02+3[tex]\sqrt{\frac{0.02(1-0.02)}{300}}[/tex]
UCL = 0.02 + 3 x 0.008082904
UCL = 0.02 + 0.024248711
UCL = 0.044248711
UCL = 0.044
Now calculate LCL using folllowing formula
LCL = p - z[tex]\sqrt{\frac{p(1-p)}{n}}[/tex]
Where
P = defect rate = 2% = 0.02
z = sigma control chart limit = 3
n = samploe size = 300
PLacing values in the formula
LCL = 0.02 - 3[tex]\sqrt{\frac{0.02(1-0.02)}{300}}[/tex]
LCL = 0.02 - 3 x 0.008082904
LCL = 0.02 - 0.024248711
LCL = -0.004248711
LCL = -0.004