1. Write the form of the partial fraction decomposition of the rational expression. Do not solve for the constants.
8x − 4/x(x2 + 1)2
2. Use partial fractions to find the indefinite integral. (Remember to use absolute values where appropriate. Use C for the constant of integration).
2x3 - 16x2 - 39x + 20/x2 - 8x - 20 x dx
3. Use partial fractions to find the indefinite integral. (Remember to use absolute values where appropriate. Use C for the constant of integration).
x2/x4 - 42x2 - 343 x dx

Respuesta :

Answer:

Step-by-step explanation:

1.

To write the form of the partial fraction decomposition of the rational expression:

We have:

[tex]\mathbf{\dfrac{8x-4}{x(x^2+1)^2}= \dfrac{A}{x}+\dfrac{Bx+C}{x^2+1}+\dfrac{Dx+E}{(x^2+1)^2}}[/tex]

2.

Using partial fraction decomposition to find the definite integral of:

[tex]\dfrac{2x^3-16x^2-39x+20}{x^2-8x-20}dx[/tex]

By using the long division method; we have:

[tex]x^2-8x-20 | \dfrac{2x}{2x^3-16x^2-39x+20 }[/tex]

                  [tex]- 2x^3 -16x^2-40x[/tex]

                                                         

                                            [tex]x+ 20[/tex]

So;

[tex]\dfrac{2x^3-16x^2-39x+20}{x^2-8x-20}= 2x+\dfrac{x+20}{x^2-8x-20}[/tex]

By using partial fraction decomposition:

[tex]\dfrac{x+20}{(x-10)(x+2)}= \dfrac{A}{x-10}+\dfrac{B}{x+2}[/tex]

                         [tex]= \dfrac{A(x+2)+B(x-10)}{(x-10)(x+2)}[/tex]

x + 20 = A(x + 2) + B(x - 10)

x + 20 = (A + B)x + (2A - 10B)

Now;  we have to relate like terms on both sides; we have:

A + B = 1   ;   2A - 10 B = 20

By solvong the expressions above; we have:

[tex]A = \dfrac{5}{2}[/tex]     [tex]B = \dfrac{3}{2}[/tex]

Now;

[tex]\dfrac{x+20}{(x-10)(x+2)} = \dfrac{5}{2(x-10)} + \dfrac{3}{2(x+2)}[/tex]

Thus;

[tex]\dfrac{2x^3-16x^2-39x+20}{x^2-8x-20}= 2x + \dfrac{5}{2(x-10)}+ \dfrac{3}{2(x+2)}[/tex]

Now; the integral is:

[tex]\int \dfrac{2x^3-16x^2-39x+20}{x^2-8x-20} \ dx = \int \begin {bmatrix} 2x + \dfrac{5}{2(x-10)}+ \dfrac{3}{2(x+2)} \end {bmatrix} \ dx[/tex]

[tex]\mathbf{\int \dfrac{2x^3-16x^2-39x+20}{x^2-8x-20} \ dx = x^2 + \dfrac{5}{2}In | x-10|\dfrac{3}{2} In |x+2|+C}[/tex]

3. Due to the fact that the maximum words this text box can contain are 5000 words, we decided to write the solution for question 3 and upload it in an image format.

Please check to the attached image below for the solution to question number 3.

Ver imagen ajeigbeibraheem
Ver imagen ajeigbeibraheem
Ver imagen ajeigbeibraheem
Q&A Education