The mean volume for a bottle of cologne is 4 ounces and the standard deviation is 0.22 ounces. A random sample of 121 bottles is taken. What is the probability of obtaining a sample mean within 0.05 ounces of the population mean?

Respuesta :

Answer:

The probability is [tex]P( 3.95< X < 4.05 ) = 0.98758[/tex]

Step-by-step explanation:

From the question we are told that

   The population mean is  [tex]\mu = 4 \ ounce[/tex]

    The standard deviation is  [tex]\sigma = 0.22[/tex]

    The sample size is  n =  121

Generally the standard error of mean is mathematically represented as

         [tex]\sigma_{x} = \frac{\sigma}{\sqrt{n} }[/tex]

=>      [tex]\sigma_{x} = \frac{ 0.22}{\sqrt{121} }[/tex]

=>      [tex]\sigma_{x} = 0.02[/tex]

The upper limit of the interval within which the sample is consider be found in is

       [tex]b = \mu + 0.05[/tex]  

=>    [tex]b = 4 + 0.05[/tex]  

=>    [tex]b = 4 .05[/tex]  

The lower limit of the interval within which the sample is consider be found in is

       [tex]a = \mu - 0.05[/tex]  

=>    [tex]a= 4 -0.05[/tex]  

=>    [tex]a = 3.95[/tex]

Generally the probability of obtaining a sample mean within 0.05 ounces of the population mean is mathematically represented as

       [tex]P( a < X < b ) = P( \frac{a - \mu }{\sigma } < \frac{a - \mu }{\sigma } < \frac{b - \mu }{\sigma } )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

      [tex]P( 3.95< X < 4.05 ) = P( \frac{3.95 - 4 }{ 0.02 } < Z< \frac{4.05 - 4}{0.02} )[/tex]

=>  [tex]P( 3.95< X < 4.05 ) = P( \frac{3.95 - 4 }{ 0.02 } < Z< \frac{4.05 - 4}{0.02} )[/tex]

=>  [tex]P( 3.95< X < 4.05 ) = P( -2.5 < Z< 2.5)[/tex]

=>  [tex]P( 3.95< X < 4.05) = P( Z<2.5) - P( Z< -2.5)[/tex]

From the z table  the area under the normal curve to the left corresponding to  2.5 and  -2.5  is

       [tex]P( Z<2.5) = 0.99379[/tex]

=>    [tex]P( Z< - 2.5) = 0.0062097[/tex]

So

    [tex]P( 3.95< X < 4.05 ) = P( Z<2.5) - P( Z< -2.5)[/tex]

    [tex]P( 3.95< X < 4.05 ) = 0.99379 - 0.0062097[/tex]

=>  [tex]P( 3.95< X < 4.05 ) = 0.98758[/tex]

Q&A Education