You have landed on Mars, and observe that it takes a stone 1.8 sec to fall 6 m.
(A) What is the acceleration of gravity on Mars?
(B) How much does a 2 kg stone weigh on Mars?
(C) If you could jump to a height of 1.5 m on Earth, how high can you jump on Mars?
(D) If you knew that the mass of Mars was 6.4 x 1023 kg, what would you deduce is its radius?
(E) The Martian moon Deimos has a mass of 3 x 10-9 that of Mars itself. If Deimos is 2.3 x 107 m away from Mars, how strongly does Mars pull on its small satellite?

Respuesta :

Answer:

[tex]3.7\ \text{m/s}^2[/tex]

[tex]7.4\ \text{N}[/tex]

4 m

[tex]3397678.06\ \text{m}[/tex]

[tex]1.55\times 10^{14}\ \text{N}[/tex]

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

[tex]s=ut+\dfrac{1}{2}at^2\\\Rightarrow 6=0t+\dfrac{1}{2}\times a\times1.8^2\\\Rightarrow a=\dfrac{6\times2}{1.8^2}\\\Rightarrow a=3.7\ \text{m/s}^2[/tex]

The acceleration due to gravity (g) on Mars is [tex]3.7\ \text{m/s}^2[/tex]

Weight is given by

[tex]w=mg\\\Rightarrow w=2\times 3.7\\\Rightarrow w=7.4\ \text{N}[/tex]

Weight of the stone on Mars is [tex]7.4\ \text{N}[/tex]

On Earth

[tex]v^2-u^2=2as\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0-2\times-9.81\times1.5}\\\Rightarrow u=5.42\ \text{m/s}[/tex]

On Mars

[tex]v^2-u^2=2as\\\Rightarrow s=\dfrac{v^2-u^2}{2a}\\\Rightarrow s=\dfrac{0-(5.42)^2}{2\times -3.7}\\\Rightarrow s=4\ \text{m}[/tex]

A person could jump 4 m on Mars.

Acceleration due to gravity on planet is given by

[tex]g=\dfrac{GM}{R^2}\\\Rightarrow R=\sqrt{\dfrac{GM}{g}}\\\Rightarrow R=\sqrt{\dfrac{6.674\times 10^{-11}\times 6.4\times 10^{23}}{3.7}}\\\Rightarrow R=3397678.06\ \text{m}[/tex]

Radius of Mars is [tex]3397678.06\ \text{m}[/tex]

Gravitational force is given by

[tex]F=\dfrac{GMm}{r^2}\\\Rightarrow F=\dfrac{GM(M\times 3\times 10^{-9})}{r^2}\\\Rightarrow F=\dfrac{6.674\times 10^{-11}\times (6.4\times 10^{23})^2\times 3\times 10^{-9}}{(2.3\times 10^7)^2}\\\Rightarrow F=1.55\times 10^{14}\ \text{N}[/tex]

The force of gravity between Mars and Deimos is [tex]1.55\times 10^{14}\ \text{N}[/tex]

Q&A Education