Respuesta :

Answer:

r1 = 4 and r2 = -10 and the final equation will be  C1e^4x + C2e^-10x

Step-by-step explanation:

The general solution to the second order differential equation

y'' + 6y' -40y=0

substitute y= e^rx

y' = re^rx

y'' = r^2*e^rx

The equation will be

r^2*e^rx + 6r*e^rx - 40*e^rx = 0

e^rx ([tex]\\r^2 + 6r - 40[/tex]) = 0  

Characteristic equation = [tex]\\r^2 + 6r - 40[/tex]

                             = [tex]r^2 +10r - 4r -40\\[/tex]

                               = r(r+10) - 4(r+10)

                                = (r-4)(r+10)

                               r1 = 4 and r2=  -10

y = e^4x  and y = e^-10x

the equation will be C1e^4x + C2e^-10x

Q&A Education