Answer: The new pressure is 0.509 atm
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 1.20 atm
[tex]P_2[/tex] = final pressure of gas = ?
[tex]V_1[/tex] = initial volume of gas = 580 ml
[tex]V_2[/tex] = final volume of gas = 1.45 L = 1450 ml (1L=1000ml)
[tex]T_1[/tex] = initial temperature of gas = [tex]22^0C=(22+273)K=295K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]40^0C=(40+273)K=313K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{1.20\times 580}{295}=\frac{P_2\times 1450}{313}[/tex]
[tex]P_2=0.509atm[/tex]
The new pressure is 0.509 atm