What is the simplest form of 3^ √27t^9/729?
t^3/27
t^6/27
t^3/3
t^6/3
Answer:
[tex]\frac{t^{3} }{3}[/tex]
Step-by-step explanation:
[tex]\sqrt[3]{\frac{27t^{9} }{729} }[/tex] 27 is a perfect cube for [tex]3^{3}[/tex] and 729 is a perfect cube for [tex]9^{3}[/tex]
[tex]\sqrt[3]{\frac{3^{3} t^{9} }{9^{3} } }[/tex] now you can pull out the numbers from under the root, for t (divide the exponent by 3)
[tex]\frac{3}{9}[/tex][tex]t^{3}[/tex] now simply to [tex]\frac{t^{3} }{3}[/tex]