Respuesta :

Answer:

2 real solutions

Step-by-step explanation:

We can use the determinant, which says that for a quadratic of the form ax² + bx + c, we can determine what kind of solutions it has by looking at the determinant of the form:

b² - 4ac

If b² - 4ac > 0, then there are 2 real solutions. If b² - 4ac = 0, then there is 1 real solution. If b² - 4ac < 0, then there are 2 imaginary solutions.

Here, a = 6, b = -20, and c = 1. So, plug these into the determinant formula:

b² - 4ac

(-20)² - 4 * 6 * 1 = 400 - 24 = 376

Since 376 is clearly greater than 0, we know this quadratic has 2 real solutions.

~ an aesthetics lover

Q&A Education