Two collinear points on a line are given in the table below:
X y

0 0 (0,0)
2 1 (2,1)

Select the points that do not lie on the line.

(4,2)
(4, 3)
(7,2)
4/8, 2/8

Respuesta :

Answer:

[tex](4,3)[/tex] and [tex](7,2)[/tex] do not lie on the line

Step-by-step explanation:

Given

[tex](0,0)\ and\ (2,1)[/tex]

Required

Determine which points that are not on the line

First, we need to determine the slope (m) of the line:

[tex]m = \frac{y_2 - y_1}{x_2- x_1}[/tex]

Where

[tex](x_1,y_1) = (0,0)[/tex]

[tex](x_2,y_2) = (2,1)[/tex]

So;

[tex]m = \frac{y_2 - y_1}{x_2- x_1}[/tex]

[tex]m = \frac{1 - 0}{2-0}[/tex]

[tex]m = \frac{1}{2}[/tex]

Next, we determine the line equation using:

[tex]y - y_1 = m(x -x_1)[/tex]

Where

[tex]m = \frac{1}{2}[/tex]

[tex](x_1,y_1) = (0,0)[/tex]

[tex]y - y_1 = m(x -x_1)[/tex] becomes

[tex]y - 0 = \frac{1}{2}(x - 0)[/tex]

[tex]y = \frac{1}{2}x[/tex]

To determine which point is on the line, we simply plug in the  values of x to in the equation check.

For [tex](4,2)[/tex]

[tex]x = 4[/tex] and [tex]y =2[/tex]

Substitute 4 for x and 2 for y in [tex]y = \frac{1}{2}x[/tex]

[tex]2 = \frac{1}{2} * 4[/tex]

[tex]2 = \frac{4}{2}[/tex]

[tex]2=2[/tex]

This point is on the graph

For [tex](4,3)[/tex]

[tex]x = 4[/tex] and [tex]y = 3[/tex]

Substitute 4 for x and 3 for y in [tex]y = \frac{1}{2}x[/tex]

[tex]3 = \frac{1}{2} * 4[/tex]

[tex]3 = \frac{4}{2}[/tex]

[tex]3 \neq 2[/tex]

This point is not on the graph

For [tex](7,2)[/tex]

[tex]x = 7[/tex] and [tex]y = 2[/tex]

Substitute 7 for x and 2 for y in [tex]y = \frac{1}{2}x[/tex]

[tex]2 = \frac{1}{2} * 7[/tex]

[tex]2 = \frac{7}{2}[/tex]

[tex]2 \neq 3.5[/tex]

This point is not on the graph

[tex](\frac{4}{8},\frac{2}{8})[/tex]

[tex]x = \frac{4}{8}[/tex] and [tex]y = \frac{2}{8}[/tex]

Substitute [tex]\frac{4}{8}[/tex] for x and [tex]\frac{2}{8}[/tex] for y in [tex]y = \frac{1}{2}x[/tex]

[tex]\frac{2}{8} = \frac{1}{2} * \frac{4}{8}[/tex]

[tex]\frac{2}{8} = \frac{1 * 4}{8 * 2}[/tex]

[tex]\frac{2}{8} = \frac{4}{16}[/tex]

[tex]\frac{1}{4} = \frac{1}{4}[/tex]

This point is on the graph

Q&A Education