Respuesta :

Answer:

Yes, see the explanation.

Roots:

x = [tex]\frac{63}{8}[/tex], or x= -10

Step-by-step explanation:

A quadratic fomrual in standard form is;

ax^(2) + bx + c = 0

The given equation:

4x^2 = -9x - 4

Maniplate the equation using inverse operations

4x^2 = -9x - 4

-4x^2    -4x^2

0 = -4x^2 - 9x - 4

Yes, this is a quadratic equation, because it fits the requirement of being able to be written in standard form.

Now find its roots:

-4x^2 -9x - 4 = 0

remember,

x = [tex]\frac{(-b) +- (\sqrt{b^{2} - 4ac }) }{2a}[/tex]

Substitute in the given values

x= [tex]\frac{(-(-9)) +- (\sqrt{(-9)^{2} - 4(-4)(-4)}) }{2(-4)}[/tex]

Simplify,

x = [tex]\frac{9 +- (\sqrt{5184}) }{-8}[/tex]

x = [tex]\frac{9 +- 72}{-8}[/tex]

x = [tex]\frac{63}{8}[/tex]

or

x= -10