Respuesta :

Space

Answer:

C.  [tex]\displaystyle \frac{cos(x)}{x} - ln(x)sin(x)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Trig Derivatives

Logarithmic Derivatives

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle f(x) = ln(x)cos(x)[/tex]

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle f'(x) = \frac{d}{dx}[ln(x)]cos(x) + ln(x)\frac{d}{dx}[cos(x)][/tex]
  2. Logarithmic Derivative:                                                                                 [tex]\displaystyle f'(x) = \frac{1}{x}cos(x) + ln(x)\frac{d}{dx}[cos(x)][/tex]
  3. Trig Derivative:                                                                                             [tex]\displaystyle f'(x) = \frac{1}{x}cos(x) + ln(x)[-sin(x)][/tex]
  4. Simplify:                                                                                                         [tex]\displaystyle f'(x) = \frac{cos(x)}{x} - ln(x)sin(x)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

Q&A Education