Respuesta :

Answer:

The value of x is 108°

Step-by-step explanation:

Given interior angles of parallelogram are:

[tex]\frac{2}{3}x, x, \frac{2}{3}x\ and x[/tex]

The sum of interior angles of a parallelogram is 360°.

We will use this information to find the value of x.

So adding up all the angles and putting the sum equal to 360 we get,

[tex]x+\frac{2}{3}x+x+\frac{2}{3}x = 360[/tex]

[tex]2x+\frac{2}{3}x+\frac{2}{3}x = 360\\2x + \frac{4}{3}x = 360[/tex]

Taking LCM on left side of the equation, as it involves fraction

[tex]\frac{6x+4x}{3} = 360\\\frac{10x}{3} = 360[/tex]

Multiplying both sides by 3

[tex]\frac{10x}{3} * 3 = 360 * 3\\10x = 1080[/tex]

Dividing both sides by 10

[tex]\frac{10x}{10} = \frac{1080}{10}\\x = 108[/tex]

Hence,

The value of x is 108°

Q&A Education