Respuesta :
Argument of the given complex number (-5√3 + 5i) will be Option (4).
Argument of a complex number:
- If a complex number if Z = (x + yi),
Imaginary part = y
real part = x
Argument of the complex number will be,
arg z = [tex]\text{tan}^{-1}(\frac{y}{x})[/tex]
Given in the question,
Imaginary number 'z' = -5√3 + 5i
Imaginary pat 'y' = 5
Real part 'x' = -5√3
Therefore, arg z = [tex]\frac{y}{x}=\text{tan}^{-1}(\frac{5}{-5\sqrt{3} })[/tex]
arg z = [tex]\frac{y}{x}=\text{tan}^{-1}(\frac{-1}{\sqrt{3} })[/tex]
Since, tan is negative in IInd quarter,
arg z = (180 - 30)° = 150°
Therefore, argument of the given complex number will be 150°
Option (4) will be the answer.
Learn more about the argument of the complex number here,
https://brainly.com/question/23729437?referrer=searchResults