Consider the numbers z = StartRoot 2 EndRoot (cos 45o + i sin 45o )and w = 2(cos 90o + i sin 90o).

Fill in the blanks to complete the statements.

In rectangular form, z − w = 1 − ____ i

In polar form z – w = StartRoot 2 EndRoot (cos
^o + i sin ___ ^o)

Respuesta :

Answer:

In rectangular form, z - w = 1 - 1i

Step-by-step explanation:

Got it correct on Edge 2020

In rectangular form, (z − w = 1 - i) and in polar form [tex]\rm z-w = \sqrt{2} (cos135^\circ+isin135^\circ)[/tex] and this can be determined by using the given data.

Given :

  • [tex]\rm z=\sqrt{2} (cos45^\circ+i\;sin45^\circ)[/tex]
  • [tex]\rm w={2} (cos90^\circ+i\;sin90^\circ)[/tex]

First, evaluate the value of 'z' by using the below calculation.

[tex]\rm z=\sqrt{2} (cos45^\circ+i\;sin45^\circ)[/tex]

[tex]\rm z=\sqrt{2} (\dfrac{1}{\sqrt{2} }+i\dfrac{1}{\sqrt{2} })[/tex]

z = 1 + i        --- (1)

Now, evaluate the value of 'w' by using the below calculation.

[tex]\rm w={2} (cos90^\circ+i\;sin90^\circ)[/tex]

[tex]\rm w={2} (0+i)[/tex]

w = 2i    ---- (2)

Now, the difference (z - w) is given by:

z - w = 1 + i - 2i

z - w = 1 - i

The rectangular form of (z - w) is given by:

z - w = 1 - i

Now, the modulus of (z - w) is given by:

[tex]\rm |z - w| = \sqrt{1^2+(-1)^2}[/tex]

[tex]\rm |z-w| = \sqrt{2}[/tex]

Now, the argument is given by:

[tex]\rm \theta = tan^{-1}\dfrac{y}{x}\\[/tex]

[tex]\rm \theta = -45^\circ[/tex]

[tex]\theta = 180-45 = 135^\circ[/tex]

The polar form of (z - w) is given by:

[tex]\rm z-w=|z-w|(cos\theta-i \; sin\theta)[/tex]

[tex]\rm z-w = \sqrt{2} (cos135^\circ+isin135^\circ)[/tex]

For more information, refer to the link given below:

https://brainly.com/question/11657509

Q&A Education