Respuesta :
Answer:
Find the roots of
2
x
2
+
8
x
−
3
=
0
by solving for
x
.
Exact Form:
x
=
−
4
±
√
22
2
Decimal Form:
x
=
0.34520787
…
,
−
4.34520787
…
Step-by-step explanation:
I have used an Algebra calculator to check my answer given and my answer is correct.
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
[tex]2 {x}^{2} + 8x - 3 = 0[/tex]
[tex](x - ( \frac{ - 8 + \sqrt{88} }{4} ) \: )(x - ( \frac{ - 8 - \sqrt{88} }{4} ) \: ) = 0 \\ [/tex]
Thus ;
[tex]x - ( \frac{ - 8 + \sqrt{88} }{4} ) = 0 \\ [/tex]
[tex]x = \frac{ - 8 + \sqrt{88} }{4} \\ [/tex]
This is one of the roots.
The other root is :
[tex]x - ( \frac{ - 8 - \sqrt{88} }{4} ) = 0 \\ [/tex]
[tex]x = \frac{ - 8 - \sqrt{88} }{4} \\ [/tex]
So sum of the roots is :
[tex] \frac{ - 8 + \sqrt{88} }{4} + \frac{ - 8 - \sqrt{88} }{4} = \\ [/tex]
[tex] \frac{ - 8 - 8 + \sqrt{88} - \sqrt{88} }{4} = \\ [/tex]
[tex] \frac{ - 16}{4} = - 4 \\ [/tex]
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
We have faster way to find ;
Remember from now on ,
If the quadratic functions have two roots ,
Sum of the roots is finding by following equation :
[tex]sum \: \: of \: \: the \: roots = - \frac{b}{a} \\ [/tex]
[tex]b = coefficient \: \: of \: \: x[/tex]
[tex]a = coefficient \: \: of \: \: {x}^{2} [/tex]
So ;
[tex]sum \: \: of \: \: the \: \: roots \: = - \frac{8}{2} \\ [/tex]
[tex]sum \: \: of \: \: the \: \: roots = - 4[/tex]
Done...
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️