Respuesta :

Answer:

Find the roots of  

2

x

2

+

8

x

3

=

0

by solving for  

x

.

Exact Form:

x

=

4

±

22

2

Decimal Form:

x

=

0.34520787

,

4.34520787

Step-by-step explanation:

I have used an Algebra calculator to check my answer given and my answer is correct.

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

[tex]2 {x}^{2} + 8x - 3 = 0[/tex]

[tex](x - ( \frac{ - 8 + \sqrt{88} }{4} ) \: )(x - ( \frac{ - 8 - \sqrt{88} }{4} ) \: ) = 0 \\ [/tex]

Thus ;

[tex]x - ( \frac{ - 8 + \sqrt{88} }{4} ) = 0 \\ [/tex]

[tex]x = \frac{ - 8 + \sqrt{88} }{4} \\ [/tex]

This is one of the roots.

The other root is :

[tex]x - ( \frac{ - 8 - \sqrt{88} }{4} ) = 0 \\ [/tex]

[tex]x = \frac{ - 8 - \sqrt{88} }{4} \\ [/tex]

So sum of the roots is :

[tex] \frac{ - 8 + \sqrt{88} }{4} + \frac{ - 8 - \sqrt{88} }{4} = \\ [/tex]

[tex] \frac{ - 8 - 8 + \sqrt{88} - \sqrt{88} }{4} = \\ [/tex]

[tex] \frac{ - 16}{4} = - 4 \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

We have faster way to find ;

Remember from now on ,

If the quadratic functions have two roots ,

Sum of the roots is finding by following equation :

[tex]sum \: \: of \: \: the \: roots = - \frac{b}{a} \\ [/tex]

[tex]b = coefficient \: \: of \: \: x[/tex]

[tex]a = coefficient \: \: of \: \: {x}^{2} [/tex]

So ;

[tex]sum \: \: of \: \: the \: \: roots \: = - \frac{8}{2} \\ [/tex]

[tex]sum \: \: of \: \: the \: \: roots = - 4[/tex]

Done...

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Q&A Education