Answer:
Tina is correct
Step-by-step explanation:
Given
[tex]Area = 12a^4b^3 - 18a^6b^3 - 72a^7b^3[/tex]
Required
State if [tex]3a^4b^3(4-6a^2-24a^3)[/tex] is a possible dimension
To do this, we simply expand [tex]3a^4b^3(4-6a^2-24a^3)[/tex]
[tex]3a^4b^3(4-6a^2-24a^3)[/tex]
[tex]3a^4b^3 * 4-3a^4b^3 * 6a^2-3a^4b^3 * 24a^3[/tex]
[tex]12a^4b^3 - 18a^{4+2}b^3 * -72a^{4+3}b^3[/tex]
[tex]12a^4b^3 - 18a^{6}b^3 * -72a^{7}b^3[/tex]
By comparison, the result of the expansion
[tex]12a^4b^3 - 18a^{6}b^3 * -72a^{7}b^3[/tex]
and the given expression
[tex]Area = 12a^4b^3 - 18a^6b^3 - 72a^7b^3[/tex]
are the same.
Hence, Tina is correct